
Advance Access publication on 8 August 2016

© The British Computer Society 2016. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

doi:10.1093/comjnl/bxw057

A Distributed File System with
Variable Sized Objects for Enhanced

Random Writes

YILI GONG
1,2, CHUANG HU

2, YANYAN XU
2
AND WENJIE WANG

3*

1State Key Laboratory of Software Engineering, Wuhan University, Wuhan, Hubei, P.R. China
2Computer School, Wuhan University, Wuhan, Hubei, P.R. China

3EECS, University of Michigan, Ann Arbor, MI, USA
*Corresponding atuhor: wenjiew@eecs.umich.edu

Cloud-based file systems are widely accepted and adopted for personal and business purposes in
recent years. Statistics shows that ∼25% of file operations from a typical user are random writes.
Inherited from traditional disk-based file systems, most distributed file systems are also based on
objects or chunks of fixed sizes, which work well for sequential writes but poorly for random writes.
This paper investigates the design paradigm of variable-sized objects for a distributed file system,
where a new file write interface is proposed to provide rich write semantics. A novel distributed file
system named VarFS, is presented to incorporate variable object indexing, support the random
write interface and remain POSIX compatible. VarFS reduces the amount of unnecessary data
being read and the number of objects modified in face of updates and consequently alleviates the
total amount of data transferred. VarFS is implemented based on Ceph and the performance mea-
surements show that it can achieve 1–2 orders of magnitude less latency than Ceph on random

writes. At the same time, the overhead for initial writes and re-writes is acceptable.

Keywords: distributed file system; fixed-sized chunk; variable-sized object; random write

Received 12 December 2015; revised 5 July 2016
Handling editor: Mark Josephs

1. INTRODUCTION

Cloud-based file systems and document storage services, such
as Dropbox [1] and Evernote [2], provide a reliable and con-
venient way for users to backup personal and/or working files
in the cloud as well as update them when necessary. At the
same time, they have become a base layer for a variety of appli-
cations. For instance, Facebook Messages (FM) stores its data
in a distributed database (HBase [3], derived from BigTable [4])
atop a distributed file system Hadoop Distributed File System
(HDFS) [5], derived from the Google File System (GFS) [6]).
For another example, the maturity of desktop virtualization puts
heavy reliance on large scale file systems.
The existed distributed file systems, like GFS and HDFS,

are created to store very large files in fixed size file chunks,
typically in 64MB size. Some file systems are based on
objects in smaller size, e.g., in 8MB size[7], like Ceph [8]
and Lustre [9]. All these file systems follow the Portable
Operating System Interface (POSIX) interface [10] and are

optimized for sequential I/Os, such as sequential reading and
appending operations. They assume that once created, files
will usually be read or written sequentially, and rarely be
modified by random writes. Given this access pattern on huge
files, appending is the main write operation that the systems
are optimized for. For a large number of applications, e.g.
data analysis programs, archival data or file processing, this
assumption is valid and they are well supported by such file
systems. Unfortunately for personal user file services and
many other applications, the assumption does not hold. As a
rule of thumb ∼25% of a typical user’s overall file access
consists of random writes. Around 90% of the FM files are
smaller than 15MB and the I/O is highly random according
to [11]. Study [12] shows that Virtual Desktop Infrastructure
(VDI) storage workloads are write-heavy and can take up
65% of I/O operations. On the other side, in Hadoop for
metadata management efficiency small files are merged into

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

large files. Consequently any write with a size change to a
interjacent file will incur change to the following small files.
Though the modification can be kept alongside the original
file and combined later for faster writing, it slows down sub-
sequent reads and re-merging of the files can be time-
consuming or even temporarily suspends the service.
Using commonly accepted POSIX write semantics, when

inserting a single byte into the midst of a file, a user has to
read the data from the insertion point to the end of the file
and write back the inserted byte together with the original fol-
lowing content. This is reasonable and acceptable in face of
directly accessible mechanical disks, which are organized by
blocks or sectors. However in distributed environments where
users and storage servers are only connected by local-area or
even wide-area networks instead of buses, which are not
always in the best condition, reading and writing back
unnecessary large amount of data chunks not only consume
processing power on both clients and servers, but also suffer
low throughput caused by network transmission overhead.
The key reasons for such I/O behavior are (i) the absence of
sufficient knowledge for file systems to identify unnecessary
data transfer and (ii) the fixed chunk size forcing chunk re-
mapping even with most content being unchanged.
Research on local file systems has been tried to adopt

variable-sized blocks to counter the influence of fixed-sized
schemes on writes. ZFS [13] manages its space with variable-
sized blocks in powers of two and the space for a single file
is allocated with one block size. In local file systems like B-
Tree File System (BTRFS) [14], files are stored in extents,
which hold the logical offset and the number of blocks used
by this extent record, which allows performing a rewrite into
the middle of an extent without having to read the old file
data first.
This paper investigates the alternative design paradigm of

variable-sized objects for a distributed file system, with the
goal to reduce the amount of data transferred by random
writes and consequentially improve the user experience. We
propose a new distributed file system, named VarFS, with a
few key design novelties for variable chunk size, includes (i)
mapping files into objects, (ii) organizing metadata and (iii)
designing a new write operation interface. VarFS chooses to
divide files based on their content, thus a change in the mid-
dle of a file generally does not impact the objects in the fol-
lowing part of the file. At the same time, it provides a
convenient way to identify each object by its content and thus
can be used for global data de-duplication. Additionally, we
propose a new file operation interface for random writes,
which keeps complete compatibility with POSIX and further
allows users to specify the exact part of data being modified.
The interface is powerful enough to express re-write, append,
insert and delete operations, and consequently allows a file
system better controlling the write behavior.
A prototype of VarFS is implemented and evaluated thor-

oughly for various file operations. With the new design, the

amount of data transferred over the network is significantly
reduced. The experiments show even if we remove bandwidth
bottleneck, the random write performance of VarFS can out-
perform traditional file system by two orders of magnitude
for large files.
In summary, the contributions of this work are: (i) a new

POSIX-compatible file write interface, rwrite() and rpwrite(),
is proposed for clients to enrich the application level seman-
tics as well as providing file systems more information for
optimization; (ii) a new file system based on variable-sized
objects, VarFS, is designed and optimized for random writes
and data de-duplication and (iii) the proposed interface and
system are implemented and evaluated extensively.
The outline of the paper is as follows. The Posix interface is

revisited and the new compatible random write interfaces are
proposed in Section 2. Section 3 explains the design of the key
components of VarFS and the read/write protocols. Section 4
describes the implementation of VarFS. VarFS is evaluated
and results are presented in Section 5. We review related work
in Section 6 and conclude the paper in Section 7.

2. FILE SYSTEM WRITE INTERFACE

POSIX [10] defines a standard operating system interface and
environment, including a command interpreter (or ‘shell’) and
common utility programs to support application portability at
the source code level. The POSIX write interface has been
followed and implemented by most distributed file systems of
the present time. In spite of its popularity, the semantics of
the POSIX write interface is too simple to provide sufficient
information for file systems of the present time to take advan-
tages of for optimization. After the analysis of the original
interface, we explain the supplemental APIs rwrite() and
rpwrite() that enrich the POSIX semantics and provide means
to improve support for file systems.

2.1. POSIX interface revisited

According to the POSIX standard, when a process writes one
or more bytes to a file, the system interface write() or pwrite()
is called to transmit the data to the device.

• ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

• ssize_t write(int fildes, const void *buf, size_t nbyte);

The write() function shall attempt to write nbyte bytes from
the buffer pointed to by buf to the file associated with the
open file descriptor, fildes. On a regular file capable of seek-
ing, the actual writing of data shall proceed from the position
in the file indicated by the file offset associated with fildes.
Before successful return from write(), the file offset shall be
incremented by the number of bytes actually written. If the

1537A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

position of the last byte written is greater than or equal to the
length of the file, the length of the file shall be set to this pos-
ition plus one.
The pwrite() function shall be equivalent to write(), except

that it writes into a given position and does not change the
file offset. The first three arguments to pwrite() are the same
as write() with the addition of a fourth argument offset for the
desired position inside the file.
If a user wants to insert, delete or substitute some bytes with

other bytes of a different size in the middle of a file, it has to
rewrite the data from the modification point to the end of the
file. It is reasonable in the days of mechanical disks, since files
are stored in sequential blocks on disks and the bit change in
the middle causes the bits after it to be moved along. However,
for modern distributed file systems, files are divided into fixed-
sized chunks and chunks are further stored in local file systems
as files on storage servers. A small change in the middle of a
file will lead to all subsequent chunks to be read, modified and
written back, including their duplicated copies distributed in
the whole storage system. This kind of design is no longer jus-
tified by current physical properties of storage devices,
let alone the huge overhead it brings.
To change this situation, writes need to be specified in a

way that provides more information to help a file system to
understand the write behavior.

2.2. Random write

The behavior of the new rwrite() and rpwrite() APIs is ran-
dom write, emphasizing writing at any position in a file,
known from appending operations. The following definitions
depict the semantics more accurately:

• ssize_t rpwrite(int fildes, const void *buf, size_t nbyte,
off_t offset, size_t mbyte);

• ssize_t rwrite(int fildes, const void *buf, size_t nbyte,
size_t mbyte);

A new parameter, mbyte, is added and represents the num-
ber of bytes will be overridden by the nbyte data in the buffer
buf . The other parameters remain the same with the ones in
the standard write interface. When mbyte is identical to nby-
tes, rwrite() degenerates to write(). Further on in this paper,
we refer the behavior of write(), substituting exactly the same
number of new bytes with the original ones, as re-write to dis-
tinguish it from the general term write. The new APIs are
named by random write. It has been noticed that in other lit-
erature random writes have been referred in contrast to
sequential writes. Here the term emphasizes writing at any
position in a file known from appending operations only at
the end.
If mybte is equal to zero, rwrite() acts actually as inserting

nbyte data into the file at the position of the file offset and is

an insert operation. If the offset is the end of the file, this
operation is equivalently an append. If mbytes is greater than
zero and nbytes equals to zero, it means to delete mbytes
from the file, which is a random write operation. If mbytes
and nbytes are both greater than zero and different from each
other, it indicates the replacement of nbytes bytes original
data by mbytes data from the buffer.
Though functionally speaking the new interface is capable

of replacing the traditional one, it can also work as a supple-
ment to the standard with full compatibility. We choose not to
alter current standard POSIX APIs in order to maintain the
compatibility with legacy applications. For these legacy appli-
cations, the traditional write() and pwrite() can be easily imple-
mented with the new APIs by setting mbyte to nbyte. The
transformation can be applied by an automatic tool to source
codes before compilation or detecting and converting at the
runtime system level. Such transition will be a per-application
decision after evaluation of the benefit of the new system.

3. DESIGN

The new proposed random write interface enables applica-
tions to control write operations with more accuracy and
flexibility. Given sufficient information, the new underlying
design, named VarFS, allows file writes only impacting the
directly modified objects or just a minimum number of adja-
cent objects, which in turn leads to less data movement, and
consequently brings the benefit of less replication updates
and better performance in unfavorable wide area networks.
With the new design, before a client’s written content is

finally submitted, the file system will try to re-group the data
into proper objects and compare them for identical or
unchanged ones that have already been on the server side. If
they do not exist on server side, the objects will be written
back, otherwise will be skipped. For example, a single byte is
deleted from the very beginning of a file in a client’s cache,
the content of the object containing the deleted byte is chan-
ged, while the other objects in the file remain intact. Thus
only the changed object should and will be transferred back
to the storage servers for writing. In some cases, where the
changed object happens to have the exact same content as
another object in other files in the file system, this object does
not need to be physically transferred back either. This is the
advantage and our motivation for content-based mapping and
global de-duplication.
VarFS is compatible with the standard POSIX interface to

accommodate legacy applications. Unmodified applications can
still benefit from the new design, but in a limited scale. For
example, the application may still use the traditional logic to
read and write back the remaining part of modified file. VarFS
will execute the read operations, but during write back, it may
detect that after re-mapping, only a few chunks are modified
and there is no need to write unmodified chunks back.

1538 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

Of course not all applications can benefit from this tech-
nique. The worst case scenario is when applications never
insert or delete in the middle of a file. Nonetheless, VarFS
provides significant bandwidth reduction for common mixture
of write workloads.
Data are viewed in three tiers: the file tier, the object tier

and local storage tier, presented in Fig. 1. Files are divided
into variable-sized objects, objects are in a flat structure logic-
ally and are stored as files in local file systems on storage
servers.
For the remainder of this section, we first discuss the over-

all architecture of VarFS, then introduce the mechanism to
partition a file into variable-sized objects based on its content,
called mapping in this paper. Since the object size is not
fixed, it will be less straightforward to acquire the object ID
or object location from the offset only. The metadata organ-
ization explains the mechanism. Last we show the process of
file reading and writing in VarFS protocol.

3.1. Mapping

One key design aspect of VarFS is to divide objects accord-
ing to their content, instead of partitioning files into objects
ad hoc or by positions in files. The main benefits include: (i)
it keeps the boundaries between objects self-sustained by
their content, i.e. an object is not or rarely affected by the
modification of other objects in the file; (ii) it becomes easy
to tell if an object has been modified in a client and thus need
be transferred back to object storage servers and (iii) it pro-
vides a means to exploit similarities crossing different files,
e.g. auto saved files in online backup file systems, object files
output by continuous compiling, multiple revisions for a file
in revision control systems, etc.
We borrow the approach from [15] and use the Rabin fin-

gerprint algorithm [16] to divide a file into variable-sized

objects based on its content. A Rabin fingerprint is the poly-
nomial representation of the data modulo a predetermined
irreducible polynomial. For each object, a hash value is com-
puted by a SHA-1 hash function [17]. It is the widely
accepted practice of assumption that no hash collisions and
two objects with the same hash value are considered identical.
Based on the uniqueness of hash values, we can determine
objects changed or not by comparing the ones’ in client-side
cache with the original ones’ from servers.
With Rabin fingerprinting, a file is treated as a stream of

bytes. Starting from the very beginning of the file, every piece
of data in a 48-byte window is examined and with probability
−2 n considers it the end of a region as an object. The Rabin
fingerprint of a window is calculated and if its low-order n
bits is not equal to a chosen value, the window slides a byte
forward and continues to calculate. If yes, it is a breakpoint
and a new object is recognized. Then the window slides 48
bytes starting right after the new object and the mapping pro-
cess proceeds. Here n is a pre-configured parameter, by which
we adjust the expected object size correspondingly changes.
As will be discussed in Section 5.3, we experiment with vari-
ous window sizes and ns, and find that (i) the window size
has little effect thus it is set to 48 bytes and (ii) the mean
object size of 1MB provides best results thus n is set as 20.
It is possible that the approach should generate too small or

too large objects, which will further incur metadata manage-
ment inconvenience, network transfer inefficiency and data
cache issues. To avoid such odd cases, VarFS defines the
minimum and maximum object size, 2 KB and 8MB,
respectively.

3.2. Metadata organization

File’s metadata describe the organization and structure of a
file system. In VarFS files are organized as trees as in most
file systems, further file data are divided into objects, which
are in flat structure. The metadata of objects are suitable for a
key-value store and object data are stored as local files in
local file systems. For simplicity and clarification, we focus
on illustrating the aspects of the metadata design related to
variable-sized objects. There are other equally important parts
not described here as they are out of the scope of this paper.
Each file keeps its metadata in an inode, including an

unique inode number, directory contents, file attributes, etc.
Besides the common attributes, VarFS adds necessary meta
information of objects required for data position, in format of
<object ID, start offset, end offset, location>. Accordingly
with an offset in the file, it can be mapped to an offset in an
object by simply looking up the inode. Pointers to objects are
also included and can be considered as cache for the object
database and only when a request for an object location fails,
usually due to void or staleness, the up-to-date information
will be fetched from database for future queries. KeepingFIGURE 1. The design architecture of VarFS.

1539A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

what is required for object locating in a file’s inode will
quicken metadata lookups. This brings the risk of potential
inconsistency, but improves performance significantly,
because if each file offset locating results in a database query,
it will be too expensive.
The attributes of an object include its globally unique

object ID, a size, an SHA-1 value, a reference count and stor-
age locations. Object are also indexed by their SHA-1 hash
values and a key-value store maps these hash values to corre-
sponding objects. Though searching the SHA-1 values, dupli-
cate objects can be identified. The reference count is the
number of files, which contain the object. Each time an object
is removed from a file, it should be purged out from the file’s
object list, and its reference count should be subtract by one.
If a user tries to modify a shared object, a new object is cre-
ated and the count on the old one decreases accordingly.
When the reference count reaches down to zero, this object
does not belong to any file and could be deleted immediately
or cleaned up by a garbage collector later. Alternatively, in a
multi-versioned file system, whenever an object is modified, a
new version of this object is created. Meanwhile the deleted
objects, even though no longer referenced, could be marked
with version numbers for historical purpose.

3.3. File access

A VarFS client is installed on each host executing application
code and exposes applications with the new proposed
POSIX-compatible file system interface. Each client main-
tains its own file data cache, independent of the kernel page
or buffer caches, making it accessible to the applications that
link to the client directly.

3.3.1. File reading
When a user opens a file, the client sends the request to a
metadata server (MDS). If the file exists and the access is
granted, a MDS traverses the file system hierarchy to translate
the file name into a file handle. The handle corresponds to the
file inode, which includes a unique inode number, a object
list and other per-file metadata.
Figure 2 shows how to read a file in VarFS. When a user

acquires some data from a file, the client sends a read request
to a MDS with the file handle, the file offset and the requested
size. The MDS checks the permission for the read and if the
request is valid. If so, it looks up the file’s inode, searches the
object list for the object(s) that the requested data are mapped
to, and then calculates object offsets for their file start and end
offset. The object ID(s) and object offsets are returned to the
client together with objects’ locations. Upon receiving the
object and location information, the client will retrieve all
mapped objects from data servers that are not in local cache.
An object’s SHA-1 hash value, in 20 bytes in VarFS, is

attached whenever the object is retrieved from data servers.

This design saves hash computation on clients and is conveni-
ent for hash comparison to detect object changing.

3.3.2. File writing
When a user executes a write request, the client locates the
related boundary object(s), i.e. the object(s) containing the
starting point, offset, and the ending point, +offset nbytes,
respectively. If the boundary objects are not in the client’s
cache, the client will retrieve them from data servers and
combine them with the written data from the user buffer. The
Rabin fingerprint algorithm is applied to the combined data
and mapped them into new objects. Before the objects are
written back to servers, VarFS checks their existence in the
system by comparing their SHA-1 hashes with those of ori-
ginal objects for fast track and with ones in the database for
slow track. Objects that are not in the system are tagged as
dirty and waits to be written back to data servers. The file
writing processing in VarFS is as shown in Fig. 3.
Actually any write can be transformed into a sequence of

deletions and insertions. Only when a deletion or insertion
involves boundaries of objects, two original objects will be
directly changed. Otherwise only the object containing the
modification point will be updated. It is rare that insertion may
cause chain reactions to re-map multiple sequential objects
because of the maximum size requirement in objects.
Similarly, it is rare for deletion impacts multiple objects due to
the minimum size requirement. In these cases, VarFS transfers
more objects than the directly impacted ones, but it still saves
more data movement than traditional distributed file systems.

4. IMPLEMENTATION

We implemented VarFS on the basis of Ceph [18], an open
source distributed file system. We only revised the necessary

FIGURE 2. Reading a file in VarFS.

1540 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

parts of Ceph to implement our core design and made the sys-
tem workable. Our prototype contains roughly 6000 lines of
modified C++ code.
The overall architecture of VarFS implementation is shown

in Fig. 4. Applications access VarFS through Filesystem in
Userspace (FUSE) and the kernel with the read and the new
random write interface. Clients interpret requests and call cor-
responding processing procedures. File MDSs store file
related metadata and are responsible for answering corre-
sponding requests. Object MDSs are a key-value store hold-
ing object information and processing object adding/
removing/duplication queries. Object Storage Device (OSD)
servers store objects, and have their own local file systems.
We use XFS as the local file systems.
In Ceph, every object has a globally unique object ID,

which consists of an inode number (a globally unique number
for every file’s inode) and an object number (an object
sequence number in the file). An object is located by its object
ID through CRUSH (Controlled Replication Under Scalable
Hashing). In VarFS, an object can belong to multiple files,
thus an object ID should be a unique number independent of
files. To exploit Ceph’s code as much as possible, we set an

object ID as a concatenation of an inode number and a global
object stamp that will be incremented by one each time used.
The inode is of the first file that introduces the object and even
the object is deleted from this file it still remains; the object
stamp will keep the uniqueness even after file revisions.
From the perspective of clients and MDSs, the object stor-

age cluster is viewed as a single logical object store. VarFS
uses Ceph’s Reliable Autonomic Distributed Object Store
(RADOS) to handle object placement, object duplication,
cluster expansion, failure detection and recovery. In VarFS,
object storage at OSDs is the same with Ceph, except that
VarFS attaches its SHA-1 value to the end of each object.
Our key modification lies in two components: the client

library and the MDS.

4.1. Client implementation

The major revisions in a client are 3-folded:

(1) providing the new random write interface to
applications;

FIGURE 3. Writing a file in VarFS.

1541A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

(2) adding a file mapping module using the Rabin finger-
print algorithm;

(3) implementing the read and write processing func-
tions, including interacting with the file MDS and
the object MDS (the communication with the OSD
server remains the same as Ceph).

Before written to OSDs, a file has to be mapped into
objects by Rabin fingerprinting. Through experiments we
find that this computation is quite time-consuming. We opti-
mize it with multi-threading, specifically 2 and 4 threads.
Additionally, the client pipelines the Rabin fingerprint calcu-
lation with the network transfer whenever possible.
In a VarFS client, we also optimize the data cache to store

variable-sized objects and their information for quick dupli-
cate object identification. The object IDs, SHA-1 values and
locations of recent objects are cached. Once a new object is
created, the local cache is searched first. If the same object is
found, the new object will be marked as clean, the new map-
ping information will be sent to the file MDS, while the
object data will not be transferred to OSDs. When there is no
local match, the SHA-1 hash of the new object will be sent to
the object MDS for checking.

4.2. MDS implementation

VarFS has its file metadata in a metadata cluster and its object
metadata in a data store. The object metadata data store,
implemented on Redis [19], records information about
objects, answers queries on objects and processes requests for
adding/removing objects.
The MDSs are based on Ceph’s MDS. Besides the regular

attributes, such as the size of the file in bytes, the user ID of the
file’s owner, etc., a VarFS inode includes a list of objects that
the file is mapped to and each object information consists of:

• object ID,
• object size,
• SHA-1 hash value of the object.

One of the most important function is to determine the corre-
sponding object by the requested file offset and data size. The
MDS will traverse the object list to locate the offset. Though
start and end offsets of objects are not recorded, since for inser-
tion and deletion objects’ positions in files may change, they
can always be calculated by objects’ position in file with object
sizes. If a file is huge and mapped to a large number of objects,
this traversal will take time. In this case, the techniques like
index pointers could be adopted to expedite this lookup.
Different from Ceph, which determines object locations

through CRUSH by object IDs, thus unnecessary to store
locations, VarFS caches the previously fetched object loca-
tions in the metadata for fast object locating. Only when the
location information is void or stale, the object metadata store
is queried.

5. EVALUATION

A variety of factors play roles in the overall performance of a
distributed file system. The performance of VarFS is exten-
sively measured for its read and write performance. There are
some tradeoff made for the experiments, which are explained
in Section 5.2.

5.1. Experiment setup

All the experiments are performed on a cluster that consists
of machines with eight core 2.13 GHz Xeon E5606 CPU,
45 GB memory, CentOS 6.3 (kernel version 3.2.51) and XFS
as the local file systems. All hosts communicate using
Transmission Control Protocol over a Gigabyte network. An

FIGURE 4. Overview of the VarFS implementation.

1542 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

monitor and an MDS are installed on one server, which are
responsible for collecting failure reports and managing meta-
data, respectively. An OSD is installed on another server,
which stores all file data. Dedicated machines are used as cli-
ents to generate workload and each can host tens to hundreds
of client instances. A VarFS client is accessed as a mounted
file system via FUSE.
To avoid the accessing speed limitation of mechanical hard

disks and the influence of prefetch mechanisms, we use
RAMDisk [20] to cache all data within the OSD memory and
disable the client-side prefetch feature.
IOzone [21], a widely used filesystem benchmark tool, is

used to generate and measure a variety of file operations, and
is used to evaluate the performance of VarFS. Besides stand-
ard reads and writes, we additionally implement the random
write operation as described in Section 2.
We have no intention to investigate the de-duplication

strength of VarFS since it mainly comes from the choice of
Rabin fingerprint algorithm and has been discussed in [15].
Thus all experiment results presented are obtained by aver-
aging 10 runs of each setting over 10 randomly selected 4 GB
files instead of related ones.

5.2. Experimental choices and caveats

To evaluate the performance of the designed system in real
deployment scenarios, we also simulate the case where there
are limited bandwidth between clients and servers. Since the
actual bandwidth and latency between clients and servers
vary greatly, it is difficult to choose representative values for
the evaluation. However, one conclusion is both intuitively
and provably true, that is when the bandwidth between clients
and servers becomes bottleneck, the amount of data trans-
ferred becomes the dominant factor in system throughput. In
such scenarios, the design principle of VarFS, including
content-based object mapping through Rabin fingerprints,
with the goal to reduce network traffic, will benefit the most
and present the best performance.
To evaluate the advantage and potential limitation of VarFS

more thoroughly and systematically, in our experiments we
intentionally eliminate the bandwidth bottleneck. We only pre-
sent one case where the client-server bandwidth constraint is
enforced, in order to demonstrate the rational and advantage
of Rabin fingerprint mechanism in real world scenarios. In
that case, the client-server bandwidth is set to 10MB/s.
It is also possible to replace Rabin fingerprint algorithm

with alternatives, such as random blocking and heuristic-
based algorithms, to reduce the computational overhead.
These alternatives are very welcome as long as they perform
similarly well in limited bandwidth scenario. In most of
evaluation, we use Rabin fingerprint to demonstrate that even
with its relatively high demand on computation, VarFS still
clearly achieves its desired performance target.

Additionally, early prototypes without extensive tuning,
like the one being evaluated here, are hard to compete with
mature commercial ready systems. To ensure fair comparison,
we adopt similar implementation and optimization approaches
to implement both the proposed design and existing systems.
Similarly, the qualitatively trends of the measurements are
more meaningful than the quantitative numbers, as they dem-
onstrate the design efficiencies, particularly when they are
orders of magnitude performance improvement.
Since existing file access traces are based on existing

POSIX interfaces where redundant data are being transferred,
we plan to collect real world random writes patterns once we
have a more reliable implementation deployed. We have the
Chinese national educational cloud platform for our experi-
ment where over 100 servers and over 100 K clients can be
leveraged when we have the reliable version ready. Currently,
in our experiment, positions and contents of file operations
data are randomly generated by the IOzone benchmark.

5.3. Read, initial write and re-write

We begin by measuring read, initial write and re-write per-
formance. Since we use RAMDisk for OSDs and all data set
is in memory, sequential reads and random reads perform
almost the same in our experiments, thus only sequential read
results are shown here. Initial writing is to create a file and
keep on writing data of the kernel page size to the end of the
file until completing the whole file. Writes in the standard
Posix I/O are referred as re-writes to distinguish from our
proposed random writes. The system behavior of re-write is
similar to that of initial write without caching and prefetching
and the actual results also confirm identical trend, thus we
only present the performance of initial writes.

5.3.1. Mapping files into objects
In VarFS, files are divided into variable-sized objects based
on their content. First of all, we investigate how the mean
object size and the request size influence the performance of
VarFS. Figure 5 shows the throughput of initial writes with
the mean object size of 1, 2 and 4MB.
As the request size grows, the throughput increases, but

when the request size reaches 8MB, the kernel page size that
we use, the throughput keeps steady. Before hitting the page
limit, the whole request could be sent from FUSE through the
kernel to VarFS one-time, but a 16MB request will always
be split up to two 8MB requests sent to VarFS, thus the per-
formance for 16MB is similar to that of 8MB.
It can also be seen that smaller mean object size always

produces better performance, because initial writing is actu-
ally implemented as a sequence of appending in the file sys-
tem and appending need retrieve the last object of the file,
consequently the smaller mean object size leads to less data
transferred. On the other hand, smaller objects generates a

1543A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

larger number of metadata, and reading or writing the same
quantity of data causes more metadata accesses and object
operations. Table 1 shows object numbers generated with dif-
ferent mean object sizes for 4 GB files. Considering both
application scenarios and performance, in the following
experiments, we use 1MB as the mean object size.

5.3.2. Read and initial write
It is important that the proposed new design does not intro-
duce extra overhead for read operations. By design, the read
performance of VarFS should not be very different with that
of Ceph. Our experiment confirms this expectation that the
throughput and latency of both VarFS and Ceph are compar-
able shown in Figs 6 and 7.
For initial write, a certain amount of overhead can be toler-

ated as additional logic is put in place to create various size
objects. The overhead amortized over the followup random
writes operations, should become minimal. We first evaluate
VarFS with Rabin fingerprinting on real application scenario
where there are limited bandwidth between clients and ser-
vers. Then we remove the bandwidth limitation and study the
potential overhead generated by Rabin fingerprinting.
Figures 8 and 9 demonstrate the initial write throughput

and latency when the network bandwidth between clients and
servers is set as 10MB/s. As has been explained in Fig. 5, a
smaller request size incurs more appending operations,
more redundant computation and more time consumed on

computation. As the computation decreases with a larger
request size, the network becomes saturated and the perform-
ance of VarFS and Ceph gets similar. In real scenarios that cli-
ents and servers are not int the same LAN, VarFS can achieve
comparable initial write performance with Ceph for larger
request sizes.
When the network bottleneck is removed, computing the

data’s fingerprints and mapping them into objects become the
new bottleneck for initial writes. It is understandable that its
performance is lower than that of Ceph, shown in Figs 10
and 11.
Figure 12 shows that with sequential single thread imple-

mentation, the computation dominates 82–91% of the write
latency and the ratio increases with the request size. If we
chose random object blocking instead of using Rabin finger-
prints, the computational overhead will be void and the initial
write performance of VarFS will become similar to that of
Ceph. Even so we still believe Rabin offers greater advantage

0

5

10

15

20

25

8 9 10 11 12 13 14

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Request Size (2x KB)

MOS 1 MB

MOS 2 MB

MOS 4 MB

FIGURE 5. The initial write throughput with different mean object
sizes and request sizes.

TABLE 1. Average object numbers of 4 GB files with varying mean
object sizes.

Mean object size

Object number 512 KB 1MB 2MB 4MB
7236 3848 2182 1479

50

60

70

80

90

100

8 9 10 11 12 13 14

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Request Size (2x KB)

Ceph

VarFS

FIGURE 6. The read throughput of VarFS and Ceph.

30

35

40

45

50

8 9 10 11 12 13 14

L
a
te

n
c
y
 (

s
)

Request Size (2x KB)

Ceph

VarFS

FIGURE 7. The read latency of VarFS and Ceph.

1544 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

in distributed client–server scenarios. Our experiments show
that the additional overhead on initial write, amortized over
the performance gain on random write, become very
acceptable.

5.3.3. Improving Rabin fingerprinting
A number of techniques can be used to improve the computa-
tion latency incurred during fingerprinting calculation, such
as hardware acceleration, or delayed writing where the server
gradually applies the re-mapping in the background.
In this section, we study the effect of the parallelization.
We implement the algorithm in two and four threads and

throughputs are shown in Fig. 13. When the request size is
relatively small, e.g. 256 or 512 KB, multi-threading does not
help much. However, for request size of 4MB or larger,
multi-threading outperform the single thread version by 48–

0

2

4

6

8

10

8 9 10 11 12 13 14

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Request Size (2x KB)

Ceph

VarFS

FIGURE 8. The initial write throughput with limited network
bandwidth.

0

20

40

60

80

100

120

8 9 10 11 12 13 14

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Request Size (2x KB)

Ceph

VarFS

FIGURE 10. The initial write throughput without network band-
width constraint.

0

100

200

300

400

500

600

700

800

900

1000

8 9 10 11 12 13 14

L
a
te

n
c
y
 (

s
)

Request Size (2x KB)

Ceph

VarFS

FIGURE 11. The initial write throughput without network band-
width constraint.

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 8 9 10 11 12 13P
e
rc

e
n
t
o
f
R

a
b
in

 f
in

g
e
rp

ri
n
t
c
o
m

p
u
ta

ti
o
n
 (

%
)

Request Size (2x KB)

1 Thread

2 Threads

4 Threads

FIGURE 12. The proportion of Rabin fingerprint computation in
the initial write latency.

50

60

70

80

90

100

110

120

130

140

8 9 10 11 12 13 14

L
a
te

n
c
y
 (

s
)

Request Size (2x KB)

Ceph

VarFS

FIGURE 9. The initial write latency with limited network bandwidth.

1545A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

86%. Experiments show that with more threads and larger
request size, the performance improvements are even more
evident.
In spite of multi-threading, Rabin computation may still

take up over 80% of the write latency for the 8 MB mean
object size seen from Fig. 12. Further optimization on the
Rabin fingerprint processing is one of our future works.

5.4. Insertion and deletion

Figure 14 presents the insertion latency of VarFS and Ceph.
The insertion latency of Ceph increases dramatically when
the file size increases because not only the inserted data but
the data from the inserting point to the end of the file need to
be transferred. The larger the file, the more the unnecessarily
transmitted data. For VarFS, the file size affects little on the
latency, because only the object containing the inserting point
and the inserted data is transferred. As expected, VarFS’s
insertion latency increases slightly with the increasing size of
inserted data. When the file size is 4 GB, the latency of
VarFS is just 2% of Ceph. Even for a smaller file of 256MB,
the insert latency is only 45% of Ceph.
The reason of VarFS outperforming Ceph on operations is

the amount of data transferred. VarFS transfers much less
data than Ceph for insertion, only 1–9%, presented in Fig. 15.
This is particularly true with large files. Even though, for
insertion operations, VarFS still computes the Rabin finger-
print of the inserted data, but the saving on data transferring
outweighs substantially.
In VarFS, deleting some data from a file is to retrieve the

affected objects, delete the data and then merge the remaining
data, and write the new object to data servers. While for Ceph
it is to rewrite the file’s data from the starting point of dele-
tion to the end. If the deleted data are at the front part of the
file, almost the whole file will be rewritten, which costs huge
overhead.
The deletion latency of VarFS and Ceph is presented in

Fig. 16. The deletion latency of Ceph increases dramatically
when the file size increases, while VarFS is less affected and
the latency remains stable with various file size. With file size
of 4 GB, the latency of VarFS is only 1% of Ceph, and for
256MB it is 16%. It is obvious that the performance of
VarFS benefits prodigiously by leaving the file data after the
deleted area untouched.

5.5. Random write

The random write operation is to delete data from a file and
insert other data to the same position. In Ceph, it writes the
file’s data to data servers from the deleting point to the end in
addition to the new data. While for VarFS, it writes the
objects containing the start point and the end point of the
deleted data besides the inserted data.

0

5

10

15

20

25

30

35

40

45

8 9 10 11 12 13

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Request Size (2x KB)

1 Thread

2 Threads

4 Threads

FIGURE 13. The initial write throughput with multi-threading.

 8

 16

 32

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

L
a
te

n
c
y
 (

s
)

8 9 10 11 12

File Size (2x MB)

VarFS 32 KB

VarFS 512 KB

VarFS 8 MB

Ceph 32 KB

Ceph 512 KB

Ceph 8 MB

FIGURE 14. The insertion latency of VarFS and Ceph.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

8 9 10 11 12

R
e
la

ti
v
e
 D

a
ta

 T
ra

n
s
fe

r
V

o
lu

m
e
 (

%
)

File Size (2x MB)

32 KB

512 KB

8 MB

FIGURE 15. The data transfer volume percentage of VarFS over
Ceph for insertions.

1546 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

Figure 17 shows the total amount of data transferred of
VarFS and Ceph in the random write. For writing the same
amount of new data, Ceph transfers significantly more data
than VarFS, by 30–500 times. Those additional data trans-
ferred are moving existing file data around, which waste net-
work and disk bandwidth.
The latency shown in Fig. 18 shows the latency of Ceph

increases dramatically with the file size. This is because large
amount of network bandwidth is wasted on moving existing
file data around, increasing the time used for the write oper-
ation. VarFS is quite inert to the file size and keeps the
latency within 0.5 second or less.
Figure 19 shows that in the worst case, VarFS’(s) latency

is ∼25% of Ceph’s result and its data transfer volume is ∼5%
of Ceph’s. The performance becomes even more prominent
with larger files. In the best case, VarFS’s random write
latency is only 2% of Ceph and its data transfer volume is
∼0.5%.

5.6. OSD performance

To evaluate the performance of VarFS on OSD servers, we
set up various number of clients to send insertion and random
write requests to the system as fast as possible. These two
types of operations are chosen because they are typical opera-
tions and our extensive experiments with other operations
demonstrated similar results.
The insertion operation is to insert a block of 8MB into a

1 GB file. Figure 20 shows the insertion throughput on OSD
servers of Ceph and VarFS. The throughput of VarFS
increases with higher number of clients, while that of Ceph
remains unchanged. VarFS achieves the peak throughput as
the server’s network bandwidth is fully occupied. Since Ceph
transfers a large amount of data even with a small number of
clients to saturate the OSD’s network, its throughput does not
vary much. In the peak cases, VarFS performs ∼100 times
better than Ceph in throughput.
For random writes, mbytes (the deleting size) and nbytes

(the inserting size) are generated randomly up to 8MB. The
results are shown in Fig. 21. The VarFS’s throughput
improves with the increasing number of client, and reaches
the peak until the network becomes the bottleneck. Similar to
the insertion case, Ceph’s random write throughput remains
unchanged. In the peak case, VarFS’s throughput is ∼70
times to Ceph. The random write throughput of VarFS is less
than the insertion throughput, because deleting data consumes
additional time.

6. RELATED WORK

Variable sized block based file systems. ZFS [13] is a filesys-
tem originally developed by SUNTMfor its Solaris OS. In
ZFS, space is managed with variable-sized blocks in powers

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

8 9 10 11 12

L
a
te

n
c
y
 (

s
)

File Size (2x MB)

VarFS 32 KB

VarFS 512 KB

VarFS 8 MB

Ceph 32 KB

Ceph 512 KB

Ceph 8 MB

FIGURE 16. The deletion latency of VarFS and Ceph.

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

8 9 10 11 12

T
o
ta

l
a
m

o
u
n
t
o
f
d
a
ta

 t
ra

n
s
fe

rr
e
d
 (

M
B

)

File Size (2x MB)

VarFS

Ceph

FIGURE 17. Total amount of data transferred of VarFS and Ceph
in the random write.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

8 9 10 11 12

L
a
te

n
c
y
 (

s
)

File Size (2x MB)

VarFS

Ceph

FIGURE 18. The random write latency of VarFS and Ceph.

1547A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

of two; the space for a single file is allocated with one block
size. BTRFS [14] divides a file into extents, which are con-
tiguous on-disk area, page aligned and of multiple page sizes.
The concept of variable-sized extents inspired the surfacing
of VarFS. In BTRFS, the logical offset and the extent size are
stored together with data on disk, thus data insertion will
cause all offsets in the following extents to change. VarFS
separates the logical information and the physical storage to
keep distributed data from changing as little as possible.
Fixed sized chunk-based distributed file systems. In past

two decades, distributed file systems have gained their popu-
larity in academia as well as industry. GFS [6] and its open
source implementation HDFS [5] target to store very large
files and adapted to sequential I/Os, such as sequential

reading and appending operations. Files are divided into
fixed-sized chunks, typically 64MB, which are duplicated
and distributed across chunk servers or data nodes.
The file systems based on objects, like Ceph [8], Lustre [9]

and PVFS2 [22], map file data onto a sequence of objects.
The object sizes for different files theoretically may vary but
in practice remain the same. It is by default set to 8MB in
Ceph [7]. For Lustre, even though a striped file can be stored
in multiple object storage targets with different file block
sizes. The block size is not variable within one stripe. PVFS2
provides message passing interface. It can be accessed like a
POSIX system, but not fully POSIX-compliant. The data are
accessed by fixed block size, where larger block size usually
performs better.
IBM’s General Parallel File System (GPFS) [23] is another

widely used distributed and parallel file systems. GPFS pro-
vides a switching fabric to allow cluster nodes connecting to
the file system distributed over thousands of disks. Large files
are divided into equal-sized blocks, typical in size of 256 KB.
GPFS is POSIX compliant.
VarFS distinguishes itself from these file systems in that

files are mapped into variable-sized objects based on content,
which additionally provides easy means for de-duplication.
Muthitacharoen et al. [15] present Low-Bandwidth

Network File System (LBFS) for low-bandwidth networks,
which exploits Rabin fingerprints to detect similarities
between files to save bandwidth. LBFS inspires us to apply
the concept of breaking files into variable-sized chunks onto
distributed file systems in data centers as well as WANs to
improve random write performance. Another effort from HP
Labs [24] focuses improving the content-based chunking
algorithm for low-bandwidth network file system. The two
thresholds and two divisors algorithm is proposed to choose

 0

 5

 10

 15

 20

 25

 30

2 6 10 14 18 22 26 30 34 38

T
h
ro

u
g
h
p
u
t
(o

p
/s

)

Client Process Number

VarFS

Ceph

FIGURE 20. The insertion throughput of OSDs in Ceph and VarFS.

 0

 5

 10

 15

 20

 25

 30

8 9 10 11 12

R
e
la

ti
v
e
 L

a
te

n
c
y
 a

n
d
 D

a
ta

 T
ra

n
s
fe

r
V

o
lu

m
e
 (

%
)

File Size (2x MB)

Latency

Data Transfer Volume

FIGURE 19. The random write latency and data transfer volume of
VarFS over Ceph.

0

2

4

6

 8

10

12

14

2 6 10 14 18 22 26 30 34 38

T
h
ro

u
g
h
p
u
t
(o

p
/s

)

Client Process Number

Ceph

VarFS

FIGURE 21. The random write throughput of OSDs in Ceph and
VarFS.

1548 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

the best chunk size. The chunk fingerprint calculation is also
based on Rabin fingerprint algorithm. VarFS adopts the
Rabin fingerprint approach to map files based on their content
and share the benefits of easy identical object detection.
Database. Besides file systems, database is another active

battle field for data management. For record insertions and
deletions, one branch of effort focuses on adopting auxiliary
structures to divide updates into partitions by their storage
locality and to organize random updates into disk friendly
sequential accesses, e.g. [25–27]. VarFS could benefit from
these approaches in client or server cache to sort and combine
updates before commit. Another branch is to crack database
storage into manageable pieces, usually by key ranges, to
reduce update maintenance effort [28–30].

7. CONCLUSION

In this paper, we have presented a variable-sized object-based
file system, VarFS, in which we choose mapping files into
objects by their content. Combined with the new file write
interface, VarFS could minimize objects to be read by write
semantics by not transferring unchanged objects. At the same
time, since changes in the middle of files do not impact
sequential objects, object mapping of files becomes compara-
tively stable and could be used for data de-duplication. We
implemented VarFS based on Ceph and for random writes it
achieves better throughput and latency than Ceph by 50
times. As part of the future works, we will explore more effi-
cient content-based mapping mechanism. Additionally, we
will implement the file system prototype targeted for solid
state drive, to evaluate actual application performance like
VDI with large file rewrite requirements.

FUNDING

The National Natural Science Foundation of China (Grant
No. 61100020 and 61572373), and Huawei Innovation
Research Program.

REFERENCES

[1] Dropbox. http://www.dropbox.com.

[2] Evernote. http://www.evernote.com.

[3] Hbase. http://hbase.apache.org/.
[4] Chang, F. et al. (2006) Bigtable: a distributed storage system

for structured data. In Proc. 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’06),
Seattle, WA, November, pp. 205–218.

[5] Shvachko, K., Kuang, H., Radia, S. and Chansler, R. (2010)
The hadoop distributed file system. In Proc. IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST’10), Lake Tahoe, NV, May, pp. 1–10.

[6] Ghemawat, S., Gobioff, H. and Leung, S.-T. (2003) The google
file system. In Proc. 19th ACM Symposium on Operating
Systems Principles (SOSP’03), Bolton Landing, NY, October,
pp. 29–43.

[7] Weil, S.A. (2007) Ceph: reliable, scalable, and high-
performance distributed storage. PhD Thesis, University of
California, Santa Cruz.

[8] Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E. and
Maltzahn, C. (2006) Ceph: a scalable, high-performance dis-
tributed file system. In Proc. 7th Symposium on Operating
Systems Design and Implementation (OSDI’06), Seattle, WA,
November, pp. 307–320.

[9] Lustre. http://lustre.org/.
[10] Posix.1-2008. http://pubs.opengroup.org/onlinepubs/-969991

9799/.
[11] Harter, T. et al. (2014) Analysis of HDFS under HBase: a

Facebook messages case study. In Proc. 12th USENIX Conf.
File and Storage Technologies (FAST’14), Santa Clara, CA,
Febuary, pp. 199–212.

[12] Shamma, M. et al. (2011) Capo: recapitulating storage for
virtual desktops. In Proc. 9th USENIX Conf. File and
Stroage Technologies (FAST’11), San Jose, CA, Febuary,
pp. 3–3.

[13] Bonwick, J., Ahrens, M., Henson, V., Maybee, M. and
Shellenbaum, M. (2002) The zettabyte file system. Technical
report. Sun Microsystems, Santa Clara, CA.

[14] Rodeh, O., Bacik, J. and Mason, C. (2012) BTRFS: the linux
b-tree filesystem. Technical report. IBM Research Division
Almaden Research Center and FusionIO, San Jose, CA.

[15] Muthitacharoen, A., Chen, B. and Mazières, D. (2001) A low-
bandwidth network file system. In Proc. 18th ACM Symposium
on Operating Systems Principles (SOSP’01), Banff, Alberta,
Canada, October, pp. 174–187.

[16] Rabin, M. O. (1981) Fingerprinting by random polynomials.
Technical Report TR-15-81. In Center for Research in
Computing Technology, Harvard University, Cambridge, MA.

[17] Burrows, J. H. (1995) Secure hash standard. Technical report.
DTIC Document, Fort Belvoir, VA.

[18] Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C.
(2006) CRUSH: controlled, scalable, decentralized placement
of replicated data. In Proc. 2006 ACM/IEEE Conf.
Supercomputing, Tampa, FL, November.

[19] Redis. http://redis.io/.
[20] Nielsen, M. How to use a RAMdisk for Linux. http : //www.

linuxfocus, org/English/Novemberl999/articlel24 .html.

[21] Iozone. http://www.iozone.org.
[22] Team, P.D. (2003). Parallel virtual file system, version 2.

http://www.pvfs.org/pvfs2/pvfs2-guide.html.

[23] Schmuck, F.B. and Haskin, R.L. (2002) GPFS: a shared-disk
file system for large computing clusters.In Proc. 1st USENIX
Conf. File and Storage Technologies (FAST’02), Monterey,
CA, January, pp. 231–244.

[24] Eshghi, K. and Tang, H.K. (2005) A framework for analyzing
and improving content-based chunking algorithms. Technical
report. Hewlett-Packard Labs, Palo Alto, CA.

1549A DISTRIBUTED FILE SYSTEM WITH VARIABLE SIZED OBJECTS FOR ENHANCED RANDOM WRITES

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

http://www.dropbox.com
http://www.evernote.com
http://hbase.apache.org/
http://lustre.org/
http://pubs.opengroup.org/onlinepubs/-9699919799/
http://pubs.opengroup.org/onlinepubs/-9699919799/
http://redis.io/
http://http : //www. linuxfocus, org/English/Novemberl 999 / art iclel24 .html
http://http : //www. linuxfocus, org/English/Novemberl 999 / art iclel24 .html
http://www.iozone.org
http://www.pvfs.org/pvfs2/pvfs2-guide.html

[25] Jermaine, C., Omiecinski, E. and Yee, W. G. (2007) The parti-
tioned exponential file for database storage management. The
VLDB J., 16, 417–437.

[26] Jermaine, C., Datta, A. and Omiecinski, E. (1999) A novel
index supporting high volume data warehouse insertion. In
Proc. 25th Int. Conf. Very Large Data Bases (VLDB’99),
Edinburgh, Scotland, September, pp. 235–246.

[27] Jagadish, H.V. et al. (1997) Incremental organization for data
recording and warehousing. In Proc. 23rd Int. Conf. Very Large
Data Bases (VLDB’97), Athens, Greece, August, pp. 16–25.

[28] Kersten, M. and Manegold, S. (2005) Cracking the database
store. In Proc. 2nd Biennial Conf. Innovative Data Systems
Research (CIDR’05), Asilomar, CA, January, pp. 4–7.

[29] Stratos Idreos, S.M. and Kersten, M.L. (2007) Database crack-
ing. In Proc. 3rd Biennial Conf. Innovative Data Systems
Research (CIDR’07), Asilomar, CA, January, pp. 1–8.

[30] Graefe, G. and Kuno, H. (2010) Self-selecting, self-tuning,
incrementally optimized indexes. In Proc. 13th Int. Conf.
Extending Database Technology (EDBT’10), Lausanne,
Switzerland, March, pp. 371–381.

1550 Y. GONG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 59 NO. 10, 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/59/10/1536/2420655 by W
uhan U

niversity Library user on 17 Septem
ber 2022

	A Distributed File System with Variable Sized Objects for Enhanced Random Writes
	1. Introduction
	2. File System Write Interface
	2.1. POSIX interface revisited
	2.2. Random write

	3. Design
	3.1. Mapping
	3.2. Metadata organization
	3.3. File access
	3.3.1. File reading
	3.3.2. File writing

	4. Implementation
	4.1. Client implementation
	4.2. MDS implementation

	5. Evaluation
	5.1. Experiment setup
	5.2. Experimental choices and caveats
	5.3. Read, initial write and re-write
	5.3.1. Mapping files into objects
	5.3.2. Read and initial write
	5.3.3. Improving Rabin fingerprinting

	5.4. Insertion and deletion
	5.5. Random write
	5.6. OSD performance

	6. Related Work
	7. Conclusion
	Funding
	References

